Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Involv Engagem ; 10(1): 7, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200589

RESUMO

BACKGROUND: In care home research, residents are rarely included in patient and public involvement and engagement (PPIE) despite their lived experiences of day-to-day care. This paper reports on a novel approach to PPIE, developed in response to Covid-19, and utilised in a large UK-based study focused on care homes. PPIE sessions were facilitated on behalf of the research team by Activity Providers (APs) already working within the care homes. This paper provides an account of how PPIE with care home residents can be achieved. METHODS: An exploratory design was used to see if it was possible to support "in-house" PPIE, with researchers working at a distance in partnership with care home staff. The National Activity Providers Association recruited five APs working in care homes. A series of optional discussion or activity sessions were developed by the research team in partnership with APs, tailored to reflect the research topics of interest and to make sessions accessible to residents with differing needs. RESULTS: APs facilitated four rounds of PPIE with up to 56 residents per topic, including individuals living with cognitive and communication impairments. Topics discussed included residents' views on data use, measuring quality of life and the prioritisation of care-related data for study collection. Feedback from the residents was observed to have unexpected and positive changes to participating care homes' practice. APs valued participation and working with researchers. They identified acquisition of new skills and insights into residents' thoughts and preferences as direct benefits. Challenges included time pressures on APs and managing emotive feedback. APs were able to approach residents at times convenient to them and in ways that best suited their individual needs. PPIE with residents provided different perspectives, particularly with respect to the importance of different types of data, and constructive challenge about some of the research team's assumptions. CONCLUSIONS: PPIE with APs as research partners is a promising approach to working in an inclusive and participatory way with care home residents. The voices of older care home residents, including those living with cognitive or communicative impairments, are important for the successful and meaningful completion of research.


In recent years there has been increasing interest in research relating to care homes. It is relatively rare that care home residents are given the chance to influence this research; often, family members or care home staff are asked to speak on their behalf. Research can influence residents' future care, and it is important to find ways of involving residents in research that are meaningful and enjoyable. This research paper discusses a new approach to involving care home residents in research. It begins by recounting how the approach came about, then covers how well it has worked so far, finally reflecting on the benefits and challenges of working in a new way. The researchers originally planned to go into care homes themselves to speak to residents, but with the onset of the Covid-19 pandemic this was no longer possible. Instead, Activity Providers already working in care homes were recruited via the National Activity Providers Association (NAPA) to help. They used activities and discussion prompts developed with the research team to speak to residents about the study. The research team hoped to make getting involved in research meaningful and interesting for residents. The team also wanted to make sure that as many people as possible living with conditions like dementia could get involved too. Comments and suggestions from residents were fed back to the research team to help them make decisions about how the research should be done.

2.
Res Microbiol ; 174(7): 104093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37343614

RESUMO

Cells have evolved strategies to safeguard their genome integrity. We describe a mechanism to counter double strand breaks in the chromosome that involves the protection of an essential housekeeping enzyme from external agents. YacG is a DNA gyrase inhibitory protein from Escherichia coli that protects the bacterium from the cytotoxic effects of catalytic inhibitors as well as cleavage-complex stabilizers of DNA gyrase. By virtue of blocking the primary DNA binding site of the enzyme, YacG prevents the accumulation of double strand breaks induced by gyrase poisons. It also enables the bacterium to resist the growth-inhibitory property of novobiocin. Gyrase poison-induced oxidative stress upregulates YacG production, probably as a cellular response to counter DNA damage. YacG-mediated protection of the genome is specific for gyrase targeting agents as the protection is not observed from the action of general DNA damaging agents. YacG also intensifies the transcription stress induced by rifampicin substantiating the importance of gyrase activity during transcription. Although essential for bacterial survival, DNA gyrase often gets entrapped by external inhibitors and poisons, resulting in cell death. The existence of YacG to specifically protect an essential housekeeping enzyme might be a strategy adopted by bacteria for competitive fitness advantage.

3.
Lancet Healthy Longev ; 3(3): e186-e193, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35282598

RESUMO

Reforms to social care in response to the COVID-19 pandemic, in the UK and internationally, place data at the heart of proposed innovations and solutions. The principles are not well established of what constitutes core, or minimum, data to support care home residents. Often, what is included privileges data on resident health over day-to-day care priorities and quality of life. This Personal View argues for evidence-based principles on which to base the development of a UK minimum data set (MDS) for care homes. Co-produced work involving care home staff and older people working with stakeholders is required to define and agree the format, content, structure, and operationalisation of the MDS. Implementation decisions will determine the success of the MDS, affecting aspects including data quality, completeness, and usability. Care home staff who collect the data need to benefit from the MDS and see value in their contribution, and residents must derive benefit from data collection and synthesis.


Assuntos
COVID-19 , Casas de Saúde , Idoso , Humanos , Pandemias , Qualidade de Vida , Reino Unido
4.
Br J Psychiatry ; 218(3): 135-142, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31647041

RESUMO

BACKGROUND: There is strong public belief that polyunsaturated fats protect against and ameliorate depression and anxiety. AIMS: To assess effects of increasing omega-3, omega-6 or total polyunsaturated fat on prevention and treatment of depression and anxiety symptoms. METHOD: We searched widely (Central, Medline and EMBASE to April 2017, trial registers to September 2016, ongoing trials updated to August 2019), including trials of adults with or without depression or anxiety, randomised to increased omega-3, omega-6 or total polyunsaturated fat for ≥24 weeks, excluding multifactorial interventions. Inclusion, data extraction and risk of bias were assessed independently in duplicate, and authors contacted for further data. We used random-effects meta-analysis, sensitivity analyses, subgrouping and Grading of Recommendations, Assessment, Development and Evaluations (GRADE) assessment. RESULTS: We included 31 trials assessing effects of long-chain omega-3 (n = 41 470), one of alpha-linolenic acid (n = 4837), one of total polyunsaturated fat (n = 4997) and none of omega-6. Meta-analysis suggested that increasing long-chain omega-3 probably has little or no effect on risk of depression symptoms (risk ratio 1.01, 95% CI 0.92-1.10, I2 = 0%, median dose 0.95 g/d, duration 12 months) or anxiety symptoms (standardised mean difference 0.15, 95% CI 0.05-0.26, I2 = 0%, median dose 1.1 g/d, duration 6 months; both moderate-quality evidence). Evidence of effects on depression severity and remission in existing depression were unclear (very-low-quality evidence). Results did not differ by risk of bias, omega-3 dose, duration or nutrients replaced. Increasing alpha-linolenic acid by 2 g/d may increase risk of depression symptoms very slightly over 40 months (number needed to harm, 1000). CONCLUSIONS: Long-chain omega-3 supplementation probably has little or no effect in preventing depression or anxiety symptoms. DECLARATION OF INTEREST: L.H. and A.A. were funded to attend the World Health Organization Nutrition Guidance Expert Advisory Group (NUGAG) Subgroup on Diet and Health meetings and present review results. The authors report no other conflicts of interest.


Assuntos
Doenças Cardiovasculares , Depressão , Adulto , Ansiedade/prevenção & controle , Causas de Morte , Depressão/prevenção & controle , Humanos , Prevenção Primária , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária
5.
J Am Med Dir Assoc ; 21(10): 1439-1450.e21, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32305302

RESUMO

OBJECTIVES: Neurocognitive function may be influenced by polyunsaturated fat intake. Many older adults consume omega-3 supplements hoping to prevent cognitive decline. We assessed effects of increasing omega-3, omega-6, or total polyunsaturated fats on new neurocognitive illness and cognition. DESIGN AND INCLUSION CRITERIA: We carried out a systematic review and meta-analysis of randomized controlled trials (RCTs) in adults, with duration ≥24 weeks, assessing effects of higher vs lower omega-3, omega-6, or total polyunsaturated fats and outcomes: new neurocognitive illness, newly impaired cognition, and/or continuous measures of cognition. METHODS: We searched MEDLINE, Embase, Cochrane CENTRAL, and trials registers (final update of ongoing trials December 2018). We duplicated screening, data extraction, and risk of bias assessment. Neurocognitive measures were grouped to enable random effects meta-analysis. GRADE assessment, sensitivity analyses, and subgrouping by dose, duration, type of intervention, and replacement were used to interrogate our findings. RESULTS: Searches generated 37,810 hits, from which we included 38 RCTs (41 comparisons, 49,757 participants). Meta-analysis suggested no or very little effect of long-chain omega-3 on new neurocognitive illness [risk ratio (RR) 0.98, 95% confidence interval (CI) 0.87-1.10, 6 RCTs, 33,496 participants, I2 36%), new cognitive impairment (RR 0.99, 95% CI 0.92-1.06, 5 RCTs, 33,296 participants, I2 0%) or global cognition assessed using the Mini-Mental State Examination (MD 0.10, 95% CI 0.03-0.16, 13 RCTs, 14,851 participants, I2 0%), all moderate-quality evidence. Effects did not differ with sensitivity analyses, and we found no differential effects by dose, duration, intervention type, or replacement. Effects of increasing α-linolenic acid, omega-6, or total PUFA were unclear. CONCLUSIONS: This extensive trial data set enabled assessment of effects on neurocognitive illness and cognitive decline not previously adequately assessed. Long-chain omega-3 probably has little or no effect on new neurocognitive outcomes or cognitive impairment. IMPLICATIONS: Long-chain omega-3 supplements do not help older adults protect against cognitive decline.


Assuntos
Doenças Cardiovasculares , Prevenção Primária , Idoso , Cognição , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária
6.
Cochrane Database Syst Rev ; 3: CD003177, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32114706

RESUMO

BACKGROUND: Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES: To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS: We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS: This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Prevenção Primária , Prevenção Secundária , Adiposidade , Adulto , Arritmias Cardíacas/epidemiologia , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/mortalidade , Causas de Morte , Doença das Coronárias/mortalidade , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos Ômega-3/efeitos adversos , Hemorragia/epidemiologia , Humanos , Embolia Pulmonar/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Análise de Regressão , Acidente Vascular Cerebral/epidemiologia , Resultado do Tratamento , Ácido alfa-Linolênico/uso terapêutico
7.
Cochrane Database Syst Rev ; 11: CD003177, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30521670

RESUMO

BACKGROUND: Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES: To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS: We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5g/d LCn3 to > 5 g/d (16 RCTs gave at least 3g/d LCn3).Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs) and ALA may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence with greater effects in trials at low summary risk of bias), and probably reduces risk of arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, except LCn3 reduced triglycerides by ˜15% in a dose-dependant way (high-quality evidence). AUTHORS' CONCLUSIONS: This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event and arrhythmia risk.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Adulto , Arritmias Cardíacas/epidemiologia , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/mortalidade , Causas de Morte , Doença das Coronárias/mortalidade , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos Ômega-3/efeitos adversos , Humanos , Prevenção Primária , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária , Acidente Vascular Cerebral/epidemiologia , Resultado do Tratamento , Ácido alfa-Linolênico/uso terapêutico
8.
Cochrane Database Syst Rev ; 7: CD003177, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30019766

RESUMO

BACKGROUND: Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES: To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS: We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence). AUTHORS' CONCLUSIONS: This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Adulto , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/mortalidade , Causas de Morte , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos Ômega-3/efeitos adversos , Humanos , Prevenção Primária , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária , Resultado do Tratamento , Ácido alfa-Linolênico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...